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Abstract—Non-uniform illumination is a significant obstacle
to facial image recognition algorithms. Apart from developing
illumination-invariant feature descriptors for the images so that
facial images of different illuminations can still be classified
correctly, non-uniform illumination can be corrected by applying
a pre-processing step beforehand. However, non-uniform illu-
mination pre-processing can be a challenging task, since it is
difficult to eliminate illumination variations without eliminating
meaningful facial feature information. Illumination variations
on facial images are dependent on the facial geometry, the
illumination characteristics of the facial surface, and both the
direction and type of illumination, which are very difficult to
estimate from merely a facial image. This report proposes using a
novel method for non-uniform illumination pre-processing which,
among other steps, is based on bidimensional empirical mode
decomposition, which approximates well spatial frequency for
non-linear and non-stationary data. Experimental results show
that this method performs similarly to competing methods and
better in the case of small training sets.

I. INTRODUCTION

Facial recognition is the task of finding descriptors for
facial images which are both discriminative and invariant
to viewing conditions, so that a new facial image can be
correctly assigned a class label. This task is most hindered by
variations in facial appearance, particularly in the camera and
facial pose, facial expression, and partial occlusions. As [21]
and [4] show, the biggest factors affecting facial appearance
among these are illumination and pose variation. With non-
uniform illumination of facial images, bright highlights and
dark shadows can accentuate or diminish facial features to the
detriment of facial recognition performance.

There are generally two ways to address this problem: (1)
to design an illumination-invariant descriptor, or (2) to pre-
process the images to normalize the illumination variations.
Although many facial recognition algorithms have in-built
measures to address illumination variations, extreme varia-
tions in lighting often still detrimentally affect recognition
performance. For this reason, this report will focus on the
pre-processing approach.

The challenge of removing illumination variations from
specific facial images lies in the drastic local variations in
shadows and highlights due to the illumination direction, type

of lighting, and facial geometry. Estimating all these factors is
very difficult from a single two-dimensional greyscale image,
so assumptions have to be made about the illumination varia-
tions. One approach is to assume that illumination variations
are low spatial frequency components of the image, and filter
all but mid-frequency components, which are assumed to
contain facial structure information useful for recognition.
Another approach is to assume that useful facial structure
information lies in the mid-intensity levels of the image, and
hence enhance the mid-intensity features at the expense of
low- and high-intensity features.

Bidimensional Empirical Mode Decomposition offers an
alternative approach to decomposing the spatial frequency
components of a two-dimensional image and works well for
nonlinear and nonstationary image information. In this paper,
I propose a novel illumination pre-processing algorithm based
on an hybrid exponential-logarithmic transform for intensity
correction, BEMD for noise reduction and shadow removal,
and DoG (Difference of Gaussian) filtering for edge enhance-
ment.

The rest of the paper is organized as follows. In section
II, I will review the prior art in facial recognition and illumi-
nation pre-processing methods. In section III, I will review
bidimensional empirical mode decomposition and the prior
art in applying it to image analysis. In section IV, I will
describe in detail the proposed method and the rationale behind
the algorithm. In section V, I will display the experimental
results for classification accuracy of various facial recognition
algorithms after applying the proposed method and other
illumination pre-processing methods. And I will conclude in
section VI, summarizing my findings and their significance.

II. REVIEW OF FACIAL RECOGNITION AND ILLUMINATION
PRE-PROCESSING

A. Facial Recognition

In general, facial recognition methods can be separated into
three categories: (1) appearance-based methods, (2) geometric
feature-based methods, and (3) soft computing-based methods.

Appearance-based methods. Appearance-based methods
of facial recognition characterize facial images by summariz-



ing the image intensities at either the global scale (i.e. appear-
ance of the overall image), intermediate scale (i.e. appearance
of sub-image objects), or the local scale (i.e. appearance of
local neighbourhoods centred around specific pixels). Holistic
approaches capture global information from an image, and
these include the PCA (Principal Component Analysis) or
Eigenfaces [26], KPCA (Kernel PCA) [31], and LDA (Linear
Discriminant Analysis) [32] methods. Hybrid approaches, on
the other hand, capture both global and local information, such
as Gabor features [16] and LBP (Local Binary Patterns) [2].

Geometric Feature-based methods. Geometric feature-
based methods use a-priori information to characterize facial
images as collections of specific image features, which are
certain geometric shapes or patterns assumed to compose a
facial image. These methods include EBGM (Elastic Bunch
Graph Matching) [28], the combined SIFT descriptor and
Common Representation Matching Space projection of [12],
and the Gabor-Kernel face recognition method [15].

Soft Computing-Based Face Recognition. Soft
computing-based methods use fuzzy logic and Bayesian
uncertainty analysis to classify facial images. Some methods
use ANNs (Artificial Neural Networks), such as the hybrid
supervised/unsupervised FFNN (Feed-Forward Neural
Network) by Intrator et al. [8], the BPNN (Feed-Forward
Back Propagation Neural Network) by Agarwal et al. [1], the
Hybrid Gabor-Neural Network by Khatun and Bhuiyan [11]
which uses Gabor filters as neural network features, and the
learned LBP method by Jing and Zhang [9]. Fuzzy-based
approaches use non-linear constraints to learn non-linear
characteristics in facial images - these include Fisherface
[30], Fuzzy LDA [13], Fuzzy SVM (FSVM) [24], DT-FSVM
which combines FSVM with a decision tree [24], and
Robust Kernel Fuzzy Discriminant Analysis (RKFDA) which
is a nonlinear robust variant of LDA [6]. And Genetic
Algorithm (GA)-based approaches use a stochastic search and
optimization algorithm to design optimal facial recognition
solutions - Sinha and Singh use a Breeder Genetic Algorithm
(BGA) to design an optimal Composite Wavelet Matched
Filter (CWMF) [23], Peretz et al. created Local Matching
Gabor (LMG) to select Gabor jets with entropy and Genetic
Algorithms [20], and Melin et al. created a Modular Neural
Network (MNN) for facial recognition [17].

B. Illumination Pre-Processing

Generally, illumination pre-processing methods can be sep-
arated into two categories: (1) intensity-based methods, and
(2) frequency-based methods.

Intensity-based Methods. Intensity-based methods of il-
lumination pre-processing assume that image illumination
variations consists of image pixels with either very high or
very low image intensity. Hence, they transform the facial
image into another number space where higher resolution is
provided to mid-intensity levels which presumably hold useful
information, and less resolution is provided to high and low
intensities. Oftentimes, either a logarithmic function is applied
to the image or else the image intensity values are raised to the

exponent of some value less than one to normalize the image
intensities. Histogram equalization is one approach, used to
redistribute the image intensities to cover the full available
intensity range. Edge extraction enables filtering out all but
edge features which presumably carry useful information.

Frequency-based Methods. Frequency-based methods of
illumination pre-processing assume that the facial image con-
sists of high-frequency edges and noise, mid-frequency facial
structure components, and high-frequency illumination vari-
ations (e.g. shadows and highlights). Hence, these methods
ignore the high- and low-frequency components of the image
and enhance the mid-frequency components of the image.
A prominent example of this approach is Jobson et al.’s
Multiscale Retinex (MSR) [10], which divides images by
smoothed versions of itself. Wang et al.’s Self Quotient Image
(SQI) [27] takes a similar approach. Chen et al.’s Logarithmic
Total Variation (LTV) factorizes the facial surface by retaining
small intrinsic facial structures [3]. Gross and Brajovic’s GB
anisotropic smoothing relies on an iterative estimation of the
blurred version of the original image [5]. A more thorough
comparison of the various frequency-based illumination pre-
processing methods available is provided by [22].

III. REVIEW OF BIDIMENSIONAL EMPIRICAL MODE
DECOMPOSITION

Empirical mode decomposition (EMD) was first introduced
as the first stage of the Hilbert-Huang transform (HHT) [7],
which was originally used to decompose any one-dimensional
data series into a finite sum of component ”intrinsic mode
functions” (IMFs). These intrinsic mode functions (1) have
approximately the same number of zero-crossings and local
extrema (their counts not differing by more than one), and (2)
have symmetric envelopes defined by the local maxima and
minima. The IMFs are extracted in a process called sifting; the
sifting process for a discrete function x(n), n = 1, 2, · · · , N
in I stages consists of the procedure outlined in 1:

In the Hilbert-Huang transform, the next step after the
EMD step is to apply the Hilbert transform to the IMFs, and
thus yield instantaneous frequency spectra for each time-series
value.

Nunes et al. extended Huang’s original one-dimensional
empirical mode decomposition only (and omitted the Hilbert
transform) to two-dimensional image data as the so-called
Bidimensional Empirical Mode Decomposition and success-
fully applied it to image and texture analysis [18] [19]. In this
method, an image is decomposed two-dimensional IMF func-
tions called Bidimensional IMFs (BIMFs) which are computed
from two-dimensional envelopes on two-dimensional local ex-
trema. Following Nunes’ work, other researchers investigated
other methods of applying BEMD to image recognition tasks
to varying degrees of success. Linderhed used BEMD to obtain
pixel-wise feature vectors for texture images [14], while Xie
used BEMD to decompose face images into components of
varying spatial frequency and then reduce shadows [29].



Fig. 1. A top-level overview of the proposed solution, with the intermediate images between steps displayed.

Result: I IMFs (c1(n), c2(n), · · · , cI(n)) and a
residue rI(n)

Set first stage’s initial proto-IMF to h11(n) = x(n)
and the 0-th IMF c0(n) to x(n);

while i = 1, 2, · · · , I do
Set j = 1, SDi1 = 0.2;
while SDij ≥ 0.2 do

Increment j by 1;
Identify local minima and maxima in hi(j−1);
Find upper envelope by connecting local

maxima by cubic spline, ui(j−1)(n);
Find lower envelope by connecting local

minima by cubic spline, vi(j−1)(n);
Find the envelope mean,
mi(j−1)(n) =

1
2ui(j−1)(n) +

1
2vi(j−1)(n);

Find the proto-IMF
hij(n) = hi(j−1)(n)−mi(j−1)(n) Find the
sum of difference between hij(n) and hi(j−1),

SDij =
∑N
n=1

|hi(j−1)(n)−hij(n)|2

h2
i(j−1)

(n)
;

end
Set i-th IMF as current proto-IMF ci(n) = hij(n);
Set i-th initial proto-IMF to the residue
hi1(n) = ci−1(n)− h(i−1)1(n);

end
Set I-th residue rI(n) = cI−1(n)− h(I−1)1(n);

Algorithm 1: One-dimensional empirical mode decompo-
sition

IV. PROPOSED SOLUTION

In this section, I will describe in detail my proposed method
for illumination pre-processing. It uses a series of steps chosen
to enhance dynamic range, filter out image noise, equalize
illumination, and normalize intensity, while still preserving
the distinguishing elements of facial images necessary for
recognition. These steps and the intermediate images between
steps are visualized in IV.

A. Dynamic Range Enhancement

This is a nonlinear operation applied to the image grey levels
in order to enhance the image’s dynamic range. In a non-
uniformly illuminated image, the dark and light regions are sat-
urated, making it difficult for facial recognition algorithms to
extract distinguishing details in either. By enhancing dynamic
range, further steps in the illumination pre-processing pipeline
are able to extract more meaningful information from formerly
saturated regions. Xie proposes to use a natural logarithm
in [29], while Tan et al. claim that gamma correction with
γ = 0.2 works best. After some experimentation, I noticed
that the logarithm transform tended to retain more noise in the
dark saturated regions, while the gamma correction transform
tended to over-correct the dark saturated regions. Hence, I
use a hybrid dynamic range enhancement transform which is
a uniformly weighted sum of the natural logarithm and the
gamma correction (see IV-A for plots of possible dynamic
range enhancement transform curves).

For a grey-level image I , the resultant dynamic-range-
enhanced version Id is derived as follows:

Id =
1

2
log I +

1

2
Iγ , γ = 0.2

B. Noise Filtering

After enhancing the dynamic range of the original image,
there is typically a significant amount of image noise in
the formerly-dark regions. Various types of noise can be
observed and are consequences of capturing images in low-
light conditions with external signal interference. Many images
appear to have additive Gaussian noise, which is the result
of capturing an image with excessive exposure in low-light
settings. In some images, there is periodic noise, which comes
from the image sensor or from electronic interference. In a
few cases, it appears that certain images have been corrupted,
and very little useful information can be extracted. Strangely,
it appears that not many illumination pre-processing schemes
consider filtering out the noise, perhaps in order to prevent



Fig. 2. Plots of various possible dynamic range enhancement transform curves.

useful details from being lost. However, noise filtering is
important for my proposed solution, because subsequent steps
can be very sensitive to noise artifacts.

After some experimenting with various commonly-used
noise filtering algorithms (such as the Gaussian smoothing
filter and edge-aware local contrast manipulation), I decided
to use a 2× 2 adaptive Wiener filter. Most of the image noise
appears to have stationary spectra and also to be additive, and
for these cases, the Wiener filter minimizes the mean square
error between the noisy and denoised images. However, this
does not get rid of the periodic image noise, and it seems that
nothing can be done in the case of image corruption.

C. Illumination Equalization

This is the step where the non-uniform illumination of the
image is equalized to approximately the same level. This
operation consists of two stages: (1) Shadow Removal, and
(2) Patch-based Median Normalization.

Shadow Removal. In this stage, bidimensional empirical
mode decomposition (BEMD) is applied to remove the shad-
ows from the image. Two stages of decomposition are applied,
and the image is decomposed as the sum of two bidimensional
implicit mode functions (BIMFs) and a single residue image
(as shown in IV-C). It is possible to decompose the image into
more than three BIMFs, but for the case of facial images, it
seems that two levels of decomposition suffice for shadow
removal: the first BIMF generally contains the edges of
the facial features useful for facial recognition, the second
BIMF generally contains the mid-scale shadows of the facial
features, and the residue image generally contains the large-
scale shadows of the entire face. However, this characterization
of extracted features for each level of BEMD is not precise
- since BEMD is an empirical technique which iteratively
decomposes an image into the sum of envelope functions
varying in spatial frequency, it often happens that smaller-
scale shadows are extracted by the first BIMF. Nonetheless,
mid-size and large-size shadows are always captured in the
second BIMF and the residue image, so I remove most of the

shadows by discarding these two components and retaining
only the first BIMF.

Patch-based Median Normalization. At this stage, the
first BIMF tends to contain the important facial features for
recognition for well-illuminated images. However, it tends to
contain smaller-scale shadows and non-uniform illumination
artifacts as well for poorly-illuminated images. In order to
eliminate these residual shadows, I use a patch-based median
normalization approach (visualized in IV-C). I sub-divide the
image into overlapping square patches, and then set the middle
pixel to the difference between the original pixel value and
the patch’s median intensity. This ensures that smooth patches
(whether bright or dark) are normalized to the same normal-
ized level, while patches with sudden illumination changes are
smoothed out, since patches with many dark pixels and few
bright pixels will take a smaller dark value, and vice versa for
patches with many bright pixels and few dark pixels. Through
experimentation, I have determined that a patch size of 7× 7
gives optimal performance.

D. Intensity Normalization

This is the step where the normalized intensities are nor-
malized so that different images are more comparable for the
later classification stage. By this point, most of the illumination
variations have been normalized, although the edges of the face
are often smoothed out by the patch-based median normaliza-
tion, and the dynamic range of the image is reduced. Hence, I
first apply a Difference-of-Gaussians (DoG) filter to the image
to enhance the edges (I found that this works best with a first
Gaussian of σ1 = 1 and a second Gaussian of σ2 = 2). Then,
I apply a simple linear image intensity equalization operation
to ensure that the image’s dynamic range is always normalized
to the range In ∈ [0, 1] as follows:

In =
I −min I

max I −minI



Fig. 3. A two-stage bidimensional empirical mode decomposition of an image decomposes it as the sum of the first BIMF, the second BIMF, and a final
Residue image

Fig. 4. A 7× 7 patch is taken around each pixel and the median value extracted to normalize the intensities

V. EXPERIMENTS

In this section, I will describe the experiments conducted on
evaluating the proposed illumination pre-processing algorithm
against alternative methods, with the quality of the algorithm
being determined by the overall accuracy of the facial recogni-
tion classification applied after the illumination pre-processing
step. I will first describe the illumination pre-processing al-
gorithms evaluated, the facial recognition algorithms used,
the facial image database used, the experimental setup, the
experimental results, and a discussion of the significance of
the results.

A. Illumination pre-processing Algorithms

The following illumination pre-processing algorithms were
evaluated:

Proposal A. This is an earlier iteration of my illumination
pre-processing algorithm. It uses the same hybrid logarithmic-
gamma dynamic range enhancement as detailed in section
IV, extracts the first BIMF in the same way, then it uses
a patch-based mean normalization (as opposed to median
normalization) extracting on 8 × 8 patches outputting 2 × 2
patches instead of single pixels, and then performs linear
intensity equalization as before. For Proposals A through
D, the BEMD MathWorks File Exchange implementation by
”Sasikanth” 1 was used with the bilinear interpolation option.

Proposal B. This is another earlier iteration of my illumi-
nation pre-processing algorithm, which is similar to Proposal
A, but includes more considerations for noise reduction and
patch boundary artifact reduction (caused by the patch-based
normalization). First, the image undergoes gamma correction
to enhance dynamic range, then noise is filtered out by local
contrast reduction, the first BIMF is extracted as usual, then a
patch-based mean normalization identical to that in Proposal
A is carried out, followed by a second local contrast reduction

1https://www.mathworks.com/matlabcentral/fileexchange/28761-bi-
dimensional-emperical-mode-decomposition–bemd-

(to remove patch boundary artifacts), and linear intensity
equalization as before.

Proposal C. This is the final earlier iteration of my illumi-
nation pre-processing algorithm, which uses a superior patch-
based normalization method and compensates the smoothed-
out edges by using local contrast enhancement. First, the
hybrid logarithmic-gamma dynamic range enhancement is
applied, followed by a Wiener filter of size 2 × 2 to filter
out noise, then the first BIMF is extracted, and a patch-
based median normalization extracting on 7 × 7 patches and
outputting single pixels is applied, followed by local contrast
enhancement to boost the edges, and then linear intensity
equalization is applied.

Proposal D (recommended). This is the recommended
iteration of my illumination pre-processing algorithm, and
the algorithm detailed in section IV. The difference between
this iteration and Proposal C is that the edge boosting by
local contrast enhancement is replaced by a Difference-of-
Gaussians (DoG) filter. This iteration is demonstrably superior
in performance to the previous three iterations.

Difference-of-Gaussians. This method normalizes image
illumination by filtering the image with the difference between
two Gaussians of different scale, the first one having σ1 = 1
and the second with σ2 = 2. This extracts features of only
a particular spatial frequency range and tends to boost edge
features while filtering out low-scale noise and shadows.

Gamma Correction. This method normalizes image illumi-
nation by enhancing the dynamic range of the image in order
to provide more grey-level resolution to the bright and dark
areas of the image. This corresponds to the gamma correction
used in image encoding, which adjusts image intensity to
better fit the nonlinear human visual system’s sensitivity to
luminance. The gamma correction curve starts at (0, 0) and
increases steadily at a decreasing rate.

Natural Logarithm. Similar to the gamma correction
method, applying the natural logarithm to an image also
provides increased grey-level resolution to the bright and dark



areas of an image. However, the natural logarithm starts lower
than the gamma correction curve and increases at a faster
rate - it starts at (1, 0) (its value approaches −∞ as the
argument approaches 0 from the right) and increases steadily
at a decreasing rate.

Gamma Correction and Difference-of-Gaussians. Tan
and Triggs combine both a gamma correction (with γ = 0.2
and a Difference-of-Gaussians filter (σ1 = 1 and σ2 = 2)
applied in sequence [25]. This enhances the dynamic range of
the image and then boosts the edges.

Histogram Equalization. Equalizing the image histogram
assumes that, in a poorly-illuminated image, the pixel in-
tensities are not well distributed across the full range of
possible pixel intensities. Hence, equalizing the histogram
values redistributes the pixel intensities so that pixel values
are more evenly distributed.

Sobel Edges. Assuming that the edge features of a face
are the most characteristic for facial recognition, the Sobel
edge method extracts the magnitude of the first-order image
gradient (which largely correspond to edges) and discards all
other information.

B. Facial Recognition Algorithms

The following facial recognition algorithms were evaluated:
Dense Scale-Invariant Feature Transform (SIFT). The

Dense SIFT facial recognition algorithm extracts local scale-
invariant SIFT features on a dense grid of interest points placed
uniformly on the facial image. Each local SIFT feature consists
of a normalized feature vector containing the histogram of
oriented gradients pooled in space and orientation, relative to
the peak orientation of the patch.

Dense Histogram of Gradients (HOG). The Dense HOG
facial recognition algorithm extracts a histogram of oriented
gradients (known as a cell) on a dense grid of interest points
placed uniformly on the facial image. Each HOG cell is then
grouped into a 2×2 ”block”, and block features are vectorized
to form a feature vector.

Dense Local Binary Patterns (LBP). The Dense LBP
facial recognition algorithm assigns each image pixel to one
of 59 different local texture patterns, depending on the local
binary characteristics of the image around that pixel. Then, the
image is sub-divided into cells and a histogram of the texture
identities in each cell is tabulated. The concatenation of the
cell histograms forms the feature vector.

Dense Speeded-Up Robust Features (SURF). The Dense
SURF facial recognition algorithm assigns a feature vector to
each point in a dense grid of interest points placed uniformly
on the facial image, which consists of the sums and absolute
sums of first-order derivatives using Haar wavelets.

C. Databases

Yale B Extended Database. The Yale B Extended Database
2 was used for facial recognition evaluation. It contains a
total of 640 grey-scale images divided into 10 classes of 64

2http://www.cs.ucsd.edu/classes/sp05/cse152/faces.zip

images each. For each of the 10 classes, grey-scale images
were captured of the same test subject facing toward the
camera but with 64 different lighting conditions. Each of the
images are sized 50 × 50. Although many of the images
contain at least some degree of noise, and some images
appear to have been corrupted, these images are useful for
illumination pre-processing evaluation because: (1) facial pose
is approximately constant and (2) images captured under many
different illumination conditions are provided.

D. Setup

The purpose of the experiment is to determine which
illumination pre-processing method is the most effective. To
that end, I created a software framework on MATLAB R2016b
to apply the different illumination pre-processing algorithms
on the images, train a Bag-Of-Visual-Words (BOVW) linear
SVM classifier on the various facial recognition algorithms,
and then test the trained classifier on unseen facial images.

Feature Encoding and Classifier. A Bag-Of-Visual-Words
(BOVW) feature encoder was designed with a vocabulary of
600 words for all image recognition algorithms. It was trained
with VLFeat’s K-means function using the approximated near-
est neighbours (ANN) algorithm and an iteration limit of 50.
Then, spatial histograms were computed and a simple linear
SVM trained on the BOVW spatial histograms.

Training and Test Set Split. The splitting of the images
in each class into training and test sets was randomized, so
the mean and standard deviation of the classification accuracy
across ten random splits was recorded. Furthermore, since
image classification algorithms are inevitably very sensitive
to the selection of training and test images, I tested the facial
recognition algorithms with different four different proportions
of training and test images for each class to evaluate how
well the facial recognition algorithms function when given
inadequate training data.

E. Results

Classification Accuracy. In Table I, the facial classifica-
tion results are listed for the different proposed iterations
of the BEMD-based illumination pre-processing algorithm.
In Table II, the facial classification results are listed for all
the competing illumination pre-processing algorithms, and the
recommended proposal algorithm (i.e. Proposal D). Note that
the ”Original” pre-processing setting merely refers to applying
facial recognition on the original images without any pre-
processing. C 32, C 16, C 8, C 4 refer to training and test
set splits of (32, 32), (16, 48), (8, 56), (4, 60) respectively.

Subjective Quality. Aside from the objective numerical
classification accuracies, I also provide some representative
examples of the ten illumination pre-processing algorithms
being applied on six facial images in V-E. ”Person 10,
Sample 21” represents images with horizontal illumination,
”Person 3, Sample 31” represents images with diagonal il-
lumination, ”Person 1, Sample 49” and ”Person 1, Sample
57” represent images with noisy information in dark areas,
”Person 2, Sample 52” represents heavily-corrupted images,



TABLE I
FACIAL CLASSIFICATION RESULTS FOR PROPOSED PRE-PROCESSING ALGORITHMS (HIGHEST MEAN ACCURACY BOLDED)

Mean Accuracy (± Standard Deviation)

Setting Proposal A Proposal B Proposal C Proposal D (recommended)

SIFT

C 32 98.44±0.7% 95.09±0.9% 98.87±0.7% 98.97±0.5%
C 16 96.00±1.1% 89.02±1.4% 96.81±1.2% 97.98±0.5%
C 8 90.95±1.7% 80.46±2.9% 93.07±2.1% 95.77±1.1%
C 4 77.75±4.1% 63.35±5.5% 82.63±2.8% 88.05±2.7%

HOG

C 32 94.78±1.5% 90.19±1.6% 97.94±1.0% 98.87±0.4%
C 16 91.73±1.5% 83.13±2.3% 95.81±0.7% 97.37±0.6%
C 8 84.75±1.7% 74.16±3.2% 90.48±2.0% 92.84±2.1%
C 4 74.03±3.6% 64.62±2.7% 83.03±3.3% 86.45±3.5%

LBP

C 32 73.78±2.0% 68.19±1.9% 89.94±2.0% 93.22±1.7%
C 16 60.83±1.6% 57.98±2.0% 81.04±2.2% 86.88±3.0%
C 8 47.66±2.1% 44.29±4.0% 64.89±2.4% 76.46±2.3%
C 4 39.47±4.4% 38.22±4.9% 58.70±4.6% 55.40±7.2%

SURF

C 32 75.03±1.7% 62.00±2.2% 81.03±2.0% 91.53±1.9%
C 16 65.42±2.8% 51.31±2.7% 69.79±3.3% 84.31±2.8%
C 8 50.80±1.7% 39.68±3.0% 57.12±2.1% 72.39±3.6%
C 4 43.08±3.2% 34.87±3.3% 46.77±2.2% 59.00±2.4%

TABLE II
FACIAL CLASSIFICATION RESULTS FOR COMPETING PRE-PROCESSING ALGORITHMS (HIGHEST MEAN ACCURACY BOLDED)

Mean Accuracy (± Standard Deviation)

Setting Proposal D (recommended) Original Gamma+DoG Log Histeq Sobel Edges DoG Gamma

SIFT

C 32 98.97±0.5% 96.41±1.1% 99.47±0.3% 97.88±0.8% 97.56±1.0% 92.66±1.7% 87.56±1.4% 98.38±0.6%
C 16 97.98±0.5% 87.58±1.9% 98.71±0.6% 94.98±1.3% 91.42±1.7% 85.40±1.8% 78.98±3.2% 94.50±0.9%
C 8 95.77±1.1% 75.25±4.3% 94.91±1.4% 85.61±2.8% 79.91±3.0% 72.45±2.7% 64.75±3.1% 80.80±1.8%
C 4 88.05±2.7% 52.68±3.3% 83.88±4.1% 66.50±4.9% 59.77±4.3% 55.02±5.5% 50.80±2.7% 62.05±3.8%

HOG

C 32 98.87±0.4% 81.19±2.8% 98.94±0.6% 94.06±1.4% 91.47±1.9% 76.16±2.0% 77.72±1.6% 92.03±1.1%
C 16 97.37±0.6% 76.54±2.2% 97.92±0.5% 89.87±1.8% 84.48±3.0% 71.88±2.2% 69.69±2.6% 87.79±1.6%
C 8 92.84±2.1% 68.20±2.4% 94.18±1.2% 81.23±3.0% 76.62±2.0% 62.82±2.7% 60.54±3.0% 78.54±3.4%
C 4 86.45±3.5% 55.35±3.1% 87.93±2.6% 67.08±3.3% 64.00±3.8% 52.55±4.2% 51.18±5.2% 66.63±4.9%

LBP

C 32 93.22±1.7% 91.53±1.5% 93.91±1.9% 91.53±1.6% 90.22±1.8% 70.16±3.2% 54.81±4.9% 91.00±1.9%
C 16 86.88±3.0% 84.31±2.0% 86.83±2.2% 84.56±1.8% 83.83±1.3% 58.19±3.3% 46.46±3.9% 82.98±1.9%
C 8 76.46±2.3% 70.55±3.6% 76.18±3.2% 75.11±3.2% 71.23±4.3% 46.36±3.0% 42.39±3.5% 70.48±4.5%
C 4 55.40±7.2% 62.55±3.3% 63.60±5.3% 63.93±2.8% 62.95±3.7% 45.90±3.7% 45.48±3.7% 62.00±3.0%

SURF

C 32 91.53±1.9% 66.09±2.4% 92.47±1.3% 80.28±2.0% 77.72±2.0% 59.59±2.4% 67.25±1.6% 77.72±1.5%
C 16 84.31±2.8% 58.35±2.4% 83.29±2.3% 72.54±3.0% 71.10±2.5% 53.79±2.7% 59.56±1.8% 70.12±1.7%
C 8 72.39±3.6% 49.20±3.1% 71.64±3.3% 61.79±2.3% 57.13±2.1% 46.36±4.2% 49.89±1.5% 60.30±3.2%
C 4 59.00±2.4% 39.35±4.2% 61.75±3.1% 49.40±3.4% 46.40±3.5% 45.90±2.8% 42.20±4.5% 49.42±3.2%

and ”Person 5, Sample 31” represents images with periodic
noise artifacts. As can be seen, facial details are barely
distinguishable in the heavily shadowed original images, and
edge-based methods do not correct the illumination well by
themselves for such images. Visually, the ”Gamma”, ”Log”,
and ”Histeq” methods work very well already in enhancing the
images’ dynamic range, but shadows remain to hinder facial
recognition. The ideally illumination-preprocessed image only
contains the useful facial edges and does not show any non-
uniform illumination. It is clear by visual inspection that the
recommended ”Proposal D” and ”Gamma+DoG” eliminate
non-uniform illumination the best. It can also be seen that
”Proposal D” is superior at equalizing the intensity of the

shadowed and unshadowed areas than ”Gamma+DoG”.

F. Discussion

From the results in Table I, it can be seen that the recom-
mended configuration of the algorithm, Proposal D, is superior
to all the other three proposed configurations, out-performing
them in all four tested facial recognition algorithms. From
the results in Table II, it can be seen that the recommended
configuration of the algorithm and the ”Gamma+DoG” out-
perform the other illumnination pre-processing algorithms. For
dense SIFT, Gamma+DoG out-performs Proposal D for larger
training sets, but Proposal D out-performs Gamma+DoG for
smaller training sets. For dense HOG, Gamma+DoG out-



Fig. 5. Displays of six illumination pre-processed images: (left to right) Original (unprocessed), Proposals A-D, DoG, Gamma Correction, Natural Logarithm,
Gamma+DoG, Histogram Equalization, and Sobel Edges.

performs Proposal D for all training set sizes, but the gap
is particularly small for the larger training set sizes (only
0.69% and 0.55% for C 32 and C 16). For dense LBP,
Gamma+DoG out-performs Proposal D for the larger training
sets, but Proposal D appears to perform better for smaller
training sets (note that, for C 4, Gamma+DoG does better, but
the standard deviation in classification accuracy is abnormally
high for both methods). For dense SURF, a similar pattern
is observed, whereby Gamma+DoG performs better for larger
training sets, but Proposal D does better for smaller training
sets, with the exception of C 4.

In general, it may be seen that the proposed method,
Proposal D, either approaches the illumination pre-processing
performance or does better than that of the next best
method, Gamma+DoG. In the case of adequate training data
(i.e. C 32), Gamma+DoG tends to do slightly better than
Proposal D, but in case of inadequate training data (i.e.
C 16, C 8, C 4), Proposal D tends to do better. Although
Proposal D does not out-perform Gamma+DoG in the case
of large training sets, its better performance for small training
sets means that Proposal D generalizes better to the facial
training data. Furthermore, a visual inspection indicates that
Proposal D does much better than Gamma+DoG in equalizing
the non-uniform illumination than a simple inspection of the
classification accuracies would suggest.

VI. CONCLUSION

To conclude, this report shows that bidimensional empirical
mode decomposition is effective for isolating shadow and

non-shadow features in facial images, and is thus a useful
component of an overall non-uniform illumination normal-
ization pre-processing algorithm, and experimental results
indicate that it helps improve facial recognition accuracy for a
variety of image recognition algorithms. When compared with
other competing illumination normalization pre-processing al-
gorithms, the proposed method out-performs all other methods
for small training sets and performs with similar accuracy to
the next best method for larger training sets. This indicates that
the algorithm is able to preprocess facial images into a form
that allows good generalization of training data for subsequent
image feature description and classification. Furthermore, a
subjective evaluation of the illumination normalization indi-
cates that the proposed method out-performs all other methods
in eliminating the sharp contrasts between dark and bright
regions in a non-uniformly illuminated facial image. Although
the various components of BEMD do not always directly
correspond with clear-cut distinctions in illumination, the
results of this report indicate that it is useful for illumination
normalization.
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