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Abstract—There is currently a need for efficient and
robust computational tools to automatically annotate dig-
ital histopathological images for computer-aided diagnosis
by human experts. Convolutional Neural Networks have
lately become the state-of-the-art in image classification
and have recently been applied to semantic segmenta-
tion. However, large, openly-available databases of dig-
ital pathology images with good quality ground-truth
segmentation are scarce and tissues may be arbitrarily
rotated. Convolutional neural networks usually require
large training sets and have no in-built rotation invariance.
Hence, I present PolarNet, a deep convolutional neural
network architecture that incorporates spatial local polar
histogramming in order to be rotation-invariant and re-
quire minimal training (“one-shot learning”). I implement
the proposed neural network, train it on a minimal set of
digital pathology images, and argue that, while it fails to
out-perform an equivalent Fully-Convolutional Network
(FCN) preliminary tests, it is a promising direction for
designing shallow convolutional neural networks.

I. OVERVIEW

Traditionally, the task of pathology diagnosis has been
solely the domain of human experts, who would extract
a tissue specimen from a patient, stain it, and examine
it under a microscope. But this process was slow and
error-prone, and once digital histopathology scanners
were made widely available, pathologists could view
high-resolution scans of entire physical tissue specimens
(known as Whole Slide Images (WSI)) on a computer
screen [8]. And with the proliferation of computing
resources, automated tools for computer-aided diagnosis
(CAD) were used by human experts in many tasks. In
this paper, I will focus on one of these tasks - semantic
tissue segmentation.

The task of semantic tissue segmentation is to assign a
single semantic label to each pixel in a histopathological
image. As such, the task is different from unsupervised
segmentation, which assigns a non-semantic, usually

appearance-based label to each pixel in an image; and
the task is also different from image classification, which
assigns a single semantic label to each image as a whole.

In general, image analysis techniques used in other
problem domains can also be applied to digital patholog-
ical image analysis. However, histopathological images
are usually very large in size, with a typical 40X scanned
image requiring up to 14.5 GB [2], and there is a scarcity
of digital pathology images openly available with good-
quality ground-truth labels. As a result, if an effective
semantic tissue segmentation algorithm is to be trained, it
must learn with a very small set of good-quality training
data and generalize robustly from this prior knowledge
to segment images it has never seen before (known as
“One-Shot Learning”). We can also note that, as digital
pathology images form a specific subset of all possible
images, certain assumptions can be made which make
the problem simpler:

1) Tissues are generally formed of regularly-repeating
patterns of elementary structural components (e.g.
cells) - suggestive of texture modelling

2) Tissues can be subjected to various transformations
and deformations (such as spatial translation, rota-
tion, shear, shape deformation) without changing
their true semantic label

3) Tissues are imaged under approximately uniform
lighting conditions

In this report, I will focus on the problems of overall
recognition accuracy and rotation invariance for seman-
tic segmentation of digital pathology images. I discuss
relevant research in Section II, my proposed method
in Section III, experimental results in Section IV, and
discussion and future directions in Section V.

II. RELATED WORK

In this section, I will describe related work in rotation-
invariant image representations and semantic segmen-
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tation methods, especially those applied to analysis of
digital histopathological images.

A. Hand-crafted Methods

SIFT (Scale-Invariant Feature Transform) [5] is a
feature detector and extractor algorithm which extracts a
128-feature vector composed of a magnitude and orienta-
tion histogram of the pixels in a local grid neighbourhood
around localized keypoints.

GLOH (Gradient Location and Orientation His-
togram) [7] is another feature detector and extractor
algorithm similar to SIFT, but which utilizes a log-polar
grid instead, which the authors argues offers greater
translation and rotation invariance.

Generic descriptor [11] extends the idea of locally-
pooled feature extractors by learning the optimal pooling
arrangement, which the authors conclude closely resem-
bles the GLOH local pooling arrangement.

FESI (Foreground Extraction from Structure In-
formation) [1] is a hand-crafted feature extractor
specially designed for digital pathology, and uses a
Gaussian-blurred Laplacian filter to extract structural
information from an image.

B. Machine Learning Methods

FCN (Fully Convolutional Network) [4] is an adap-
tation of other state-of-the-art convolutional neural net-
works for the semantic segmentation task. It applies suc-
cessive convolutional layers followed by an up-sampling
layer to reduce the input image dimensionality into a
compressed feature representation, and then up-sample
this into a pixel segmentation map.

U-Net [9] is a convolutional neural network specially
trained for semantic segmentation of digital pathology
images, which applies a succession of convolutional
layers and transpose convolution layers for up-sampling,
just like Long’s FCN. However, U-Net includes skip
connections to transfer information from earlier layers
to later layers.

T-Net [6] is a convolutional neural network based
on U-Net for segmenting digital pathology images, and
has a similar architecture, except it adds additional
convolutional layers in the skip connections between
layers.

III. METHOD

In this section, I describe two proposed methods for
semantic texture segmentation (depicted in 1). The first
proposed method (called PolarNet-1) is a modification
of a Fully Convolutional Network, with its first con-
volution layer replaced with: (1) a convolution layer

with a fixed convolutional filter bank (using MaxPol
filters [3]) for edge and bar extraction, (2) a convolution
layer with a fixed convolution filter bank (using polar
pooling masks), (3) an orientation, depth concatenation,
and switching layer to re-arrange the previous features,
and (3) a 1 × 1-kernel convolution layer to combine
the previous features, followed by a non-linearity and
pooling function. The second proposed method (called
PolarNet-2) is similar, but omits the MaxPol filters and
only uses the polar pooling convolutions without feature
re-arrangement. Subsequent layers for both proposed
networks is identical.

A. Architecture

In this part, I briefly describe the unique aspects of
the architectures of PolarNet-1 and PolarNet-2.

Fig. 1. The architectures of PolarNet-1 (left), PolarNet-2 (middle),
and FCN (right). Note that the layers with learnable parameters are
depicted in blue and fixed layers in green.

Polar Convolution Layers
Drawing on the local feature extractor work of [7], and
[11], I propose replacing the rectangular-receptive-field
k1 × k2 × din × dout convolution layer normally used in
convolutional neural networks with: (1) a k1 × k2 × 1×
nbins convolution layer with polar pooling masks, then
(2) a 1×1×nbins×din×dout convolution layer. This is
equivalent to performing a k1 × k2 × nbins × din × dout
convolution with a polar receptive field instead of a
k1 × k2 × din × dout convolution with a rectangular
receptive field. Each of the nbins masks consists of
two unit-sum 2D Gaussian functions shifted to the dual
centres of each numbered bin depicted in 3, and with a



radius commensurate with the radial bin extent.
I hypothesize that this “polar convolution” arrangement
is advantageous for semantic segmentation, because it:
• Enables more combinations of preceding informa-

tion to be learned, i.e. nbins× din× dout instead of
din × dout

• Should be more invariant to translation and rota-
tion, as each discrete value in the receptive field
corresponds with an spatial bin instead of a single
pixel

• Requires learning far fewer parameters; a rectan-
gular convolution layer requires the learning of
k1 × k2 × din × dout parameters, but a polar con-
volution layer as proposed requires the learning of
only 1× 1× nbins × din × dout parameters

Orientator Layer
In PolarNet-2, an orientator layer computes the gradient
magnitude with a local sliding window L(x, y) at each
pixel (x, y) of the incoming image (after first converting
to grayscale) [10], extracts the gradient centroid (or
dominant orientation), and then bins it in an angular
histogram, as depicted in diagram 2:

φd(x, y) = tan−1

∑
(u,v)∈L(x,y) vG(u, v)∑
(u,v)∈L(x,y) uG(u, v)

φb(x, y) =



1, if − 90◦ ≤ φd(x, y) < −67.5◦,

67.5◦ ≤ φd(x, y) < 90◦

2, if 22.5◦ ≤ φd(x, y) < 67.5◦

3, if − 22.5◦ ≤ φd(x, y) < 22.5◦

4, if − 67.5◦ ≤ φd(x, y) < −22.5◦

(1)

Switching Layer
For PolarNet-2, after the dominant orientation is ex-
tracted at the pixel level, a switching level re-arranges
the features outputted by the polar convolution layer
fconv_1binthediagram1 to re-align the features with
their dominant orientations. For example, in the diagram
3, a non-horizontally-aligned local patch is re-aligned to
a canonically-arranged polar pooling mask by a circular
shift counter-clockwise of 2 bins.

Convolution Layers
A k1×k2×din×dout convolution layer applies dout linear
sums of each of the preceding din feature maps in a local
neighbourhood of k1×k2. When a 1×1×nbins×din×dout
set of filters convolves an incoming feature map (as is
done with the polar convolution discussed above), each
incoming feature map’s pixel is summed up indepen-
dently of nearby pixels.

Fig. 2. The legal dominant orientation bins used in the Orientator
Layer

Fig. 3. The canonically-arranged polar pooling mask (left), and a
re-arranged polar pooling mask aligned to the canonical arrangement
(right)

Transposed Convolution Layers
Differently from convolutional neural networks used for
image classification, semantic segmentation networks
have to assign a label per pixel. Hence, it is necessary
to up-sample the feature map back to the original image
dimensions after down-sampling by the pooling layers.
This is accomplished through the use of a transposed
convolution layer which is identical to a convolution
layer with fractional stride.In PolarNet-1 and PolarNet-2,
only one such layer is used for 2X up-sampling.

B. Problem Formulation

The problem of learning the networks can be formu-
lated as a non-linear and non-convex classic optimization
problem of learning the optimal set of K network param-
eters Θ∗ = {θ∗1, · · · , θ∗K} which minimizes an objective
function f0 associated with predicting class labels Ŷ for



a given input image X and a set of network parameters
Θ = {θ1, · · · , θK}, and compared with ground-truth
class labels Y :

Θ∗ = argmin
Θ

f0(X; Θ) = −
P∑

p=1

Yp(X) log Ŷp(X; Θ),

subject to
P∑

p=1

Ŷp(X; Θ) = 1,

where X ∈ Rh×w×d,

Y ∈ Rh×w×d×P ,

Θ = {θ1, · · · , θK}

Due to the non-linear and non-convex nature of the
problem, simplification schemes such as Lagrangian du-
ality and KKT methods cannot be applied. Stochastic
gradient descent and backpropagating the classification
output to each layer’s parameters in the network gives
an effective learning heuristic which tends to converge to
the global optimal network parameter configuration Θ∗:

Θ(t) := Θ(t−1) − η∂f0(X; Θ(t−1))

∂Θ(t−1)

IV. EXPERIMENTS

A. Setup

In this section, I will describe some preliminary re-
sults of my investigation into the suitability of polar
convolution layers for semantic tissue segmentation.
Both PolarNet-1 and PolarNet-2 were implemented on
MATLAB R2017b, and built using the Neural Net-
work library, then compared to an equivalent Fully
Convolutional Network with an architecture identical to
the sample semantic segmentation network provided by
MathWorks, but specially trained on my custom data.
The training and testing was conducted on a HP Z440
Workstation with 128 GB of RAM and an NVIDIA
GeForce GTX 1080 Ti GPU.

B. Data

The data used in this paper consisted of a set of 18
histopathology images selected from a larger database of
fluorescence microscopy scans specifically to maximize
illumination uniformity and diversity of tissue structures,
and were hand-labelled pixel-by-pixel with the 6 tissue
classes, each exemplified by the single training images
each depicted in Figure 4:

The training-test split was: 6 training images and 12
testing images, where each tissue class was represented

Fig. 4. The six training images used for the experiments

by a training image predominantly consisting of that
tissue class.

C. Experiment 1: Training Convergence

Each of the evaluated networks was trained using the
above-mentioned training information on a mini-batch
size of all 6 images and a maximum epoch count of 100.
The plots of the training accuracy and loss are provided
in 5. It is evident that FCN converges fastest and attains
overall best training accuracy, while PolarNet-1 has not
completed training by the maximum epoch point, and
PolarNet-2 saturates in training after the first few epochs.

Fig. 5. The training convergence plots of all three networks: FCN
(left), PolarNet-1 (middle), and PolarNet-2 (right)

D. Experiment 2: Pixel Classification Accuracy

Only preliminary experiments were completed at the
time of writing, and they indicate that, although the polar
convolution concept has a feasible theoretical basis for
improving semantic segmentation performance, in fact,
a simple, equivalent Fully Convolution Network trained
on the same data is still more computationally-efficient
and accurate than either PolarNet-1 and PolarNet-2.
The qualitative and quantitative results of the semantic
segmentation are presented respectively in 6 and I.

V. DISCUSSION / FUTURE DIRECTIONS

It is evident from the qualitative and quantitative re-
sults presented above that, after training on the extremely



TABLE I
THE QUANTITATIVE SEMANTIC SEGMENTATION RESULTS, FROM ALL THREE EVALUATE NETWORKS, MEASURED WITH THE JACQUARD

INDEX

Test Image #
Method 1 2 3 4 5 6 7 8 9 10 11 12 Avg
FCN 0.3908 0.7955 0.3471 0.2178 0.2102 0.2433 0.4758 0.5201 0.396 0.4829 0.001 0.0009 0.340117
PolarNet-1 0.4089 0.7706 0.1442 0.1711 0.0812 0.0529 0.0272 0.065 0.0056 0.1122 0 0 0.153242
PolarNet-2 0 0.3641 0.7712 0.7657 0 0 1 1 0.2304 0.3418 0 0 0.372767

Fig. 6. The qualitative semantic segmentation results, from all three
evaluated networks, along with the original images and ground-truth
labels

small training set of digital pathology images, none of
the three evaluated methods perform particularly well
in semantic segmentation quality. The FCN does the
best overall over all twelve test images, and PolarNet-
1 still attains reasonable results, and in fact is both
numerically and visually superior in isolating tissues
from the background. On the other hand, there is clearly
something failing in PolarNet-2, as it consistently assigns
the label “Dense Irregular” to any pixel inputted to it.
The preliminary results presented in this paper do not
support the hypothesis that the proposed polar convolu-
tion offers superior semantic segmentation performance
over rectangular-receptive-field convolution. However,
for many theoretical reasons, it offers an attractive alter-
native and further investigation is warranted. An obvious
experiment to conduct would be to evaluate the rotation
invariance of the semantic segmentation networks.
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