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Abstract—Part segmentation is an important bottom-
up vision task that involves the perceptual grouping of
lower-level visual stimuli into meaningful structures for
higher-level processing informed by semantic information.
Currently, there exist many part segmentation methods
approaching the problem from either a 2-D Gestalt or
medial axis grouping paradigm, or from a 3-D mesh
partitioning paradigm. This paper proposes to approach
part segmentation through a 2.5-D local surface orientation
paradigm, by inferring likely surface orientation from a
2-D image and segmenting object parts with that informa-
tion. A simple algorithm demonstrating the functionality
of the approach is designed in different configurations,
and tested on a small set of synthetic and natural images.
Experimental results show that the optimal configuration
of the proposed method works well for segmenting object
parts, provided the object of interest is well-segmented
from the background and other irrelevant objects.

I. OVERVIEW

Vision can be conceptualized as the recovery of mean-
ingful, relevant, and useful information about a scene of
3-D objects from a 2-D visual intensity array projected
onto a sensor array (the retina for biological images,
and an image sensor for digital images). One such vision
task, known as part segmentation, concerns the segment-
ing of the observed image into meaningful parts based on
some criteria - research [29] indicates that humans are
remarkably capable of extracting meaningful structural
patterns even from images of unfamiliar objects, and
Wertheimer noted that the human mind tended to apply
innate grouping laws to organize visual elements as parts
of whole percepts. Among others, he noted that proxi-
mal, similar (in shape, colour, or shading), common-fate,
continuous, and self-enclosed elements are more likely
to be perceived together as grouped organizations, and
that these factors interact with one another in a complex
way [32].

Subsequent psychophysical research has made fur-
ther observations about human visual perception. [15]

Visual 2-D 
Sensor Array

(I) Primal 
Sketch

(II) 2.5-D 
Sketch

(III) 3-D 
Sketch

Capture Device

(1) 2-D Gestalt Part 
Segmentation

(2) 3-D Mesh Part 
Segmentation

(3) Medial Axis Part 
Segmentation

Proposed Approach

Image Projection

Scene 
Interpretation

3-D Objects in 
Scene

Fig. 1. Four possible approaches to part segmentation, considered
under Marr’s three-stage formulation of the vision problem

showed that human texture discrimination is the re-
sult of local fundamental features called textons. [6]
showed that humans are more perceptually sensitive
on a 2-D contour closure continuum. [17] theorized
that the human mind extracts medial-axis “skeletons”
as intermediate-level representations of visual objects.
And [11] argued that the human visual system divides
perceived surfaces into parts along contours of concave
discontinuity.

These findings on human vision suggest that humans
might be decomposing highly complex scene images
using a grammar of visual primitives, and then group
them into more manageable parts which make up whole
objects. This is helpful for computational vision because,
if replicated in a computational framework, it potentially
provides a compact but meaningful shape representation
for extracting relevant information about the 3-D scene
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from 2-D digital images.
As mentioned above, the part segmentation task aims

to divide an image into meaningful parts, usually by
some semantic, appearance, or shape criteria. In doing
so, an imaged object can be represented as an artic-
ulated arrangement of simpler geometric components
in order to facilitate subsequent recognition or other
more abstracted visual processes informed by higher-
level knowledge and purpose [21]. Since these parts
are more invariant than individual pixels over viewing
position and conditions, solving the part segmentation
problem permits robust object detection even from a
novel viewpoint or subjected to a similarity transform,
assuming that part decomposition is still possible.

II. RELATED WORK

There are many possible approaches to solve the
part segmentation problem; three existing approaches are
detailed in this section.

(1) 2-D Gestalt Part Segmentation
These part segmentation algorithms assume that imaged
object parts comprise of visual primitives (e.g. zero-
crossings, edges, bars, blobs) which are grouped together
by Gestalt grouping laws. A particularly widespread
approach is to model object parts as self-enclosed re-
gions of the image bounded by maximally-convex non-
accidental 2-D contours. Graph theoretic frameworks are
used by [18] to maximize superpixel contour closure
and compactness, while [23] groups image “edgels” by
continuity and proximity.

(2) 3-D Mesh Part Segmentation
These part segmentation algorithms assume that ob-
ject parts are regions bounded (in three-dimensions) by
maximally-convex surfaces, usually by applying a graph-
theoretic approach like Normalized Graph Cuts [24] to
3-D mesh data. [19] use spectral clustering, [10] use
randomized cuts, and [16] use fuzzy clustering and mean
cuts.

(3) Medial Axis Part Segmentation
These part segmentation algorithms decompose closed
2-D shapes into sets of symmetric skeletal parts cen-
tred around linear or curvilinear axes. [2] proposed the
medial axis transform, [25] used shock graphs (graphs
of singularities in inward silhouette evolution), and [7]
approached skeletonization through a Bayesian proba-
bilistic framework.

III. METHOD

In this section, I give an overview of the proposed two-
stage method for part segmentation using estimated local

surface normal information as an intermediate shape
representation. Then, I will describe the different aspects
of the part segmentation problem addressed by each
stage, and the functionality of the considered methods
for each stage.

A. Overview

As mentioned earlier, there are three main approaches
to part segmentation: (1) the 2-D Gestalt approach,
(2) the 3-D Mesh approach, and (3) the Medial Axis
approach. The main weakness of the first approach is
its reliance on detecting the visual primitives first in
order to infer the underlying shape, which is susceptible
to appearance variations (e.g. lighting, texture). And by
strictly requiring an enclosed 3-D mesh to segment,
the second approach is unsuitable for performing part
segmentation on a 2-D image, short of including an
initial 3-D mesh estimation step. The third approach,
similarly to the first approach, is reliant on accurate
contour detection, which can be difficult for highly
textured images.

These approaches can be understood as selectively
incorporating various levels of information from Marr’s
three-stage formulation of the vision problem [22].
Here, vision is seen as proceeding in sequence from a
two-dimensional visual array to: (1) a primal sketch
comprising of primitive scene components (e.g. zero-
crossings, blobs, edges, bars), (2) a 2.5-D sketch com-
prising of viewer-centred 2-D planar projections of local
3-D surface scene elements, and finally to (3) a 3-
D sketch of hierarchical models of 3-D volumetric
models, which when incorporating top-down informa-
tion can facilitate the extraction of useful information
about the scene underlying the original visual array.
Interpreted through Marr’s framework, the first and third
approaches use primal sketch information to describe the
3-D sketch, and the second approach describes the 3-
D sketch straight from 3-D information known a priori
(see the blue, green, and yellow arrows in Figure 1
for the conceptualization of approaches (1), (2), and (3)
respectively under Marr’s three-stage formulation).

Hence, I propose to approach the part segmentation
problem by extracting the surface normal information
as an intermediate 2.5-D sketch representation of shape
to bridge the primal and 3-D sketch stages (see the
red arrows in Figure 1 for the conceptualization of
the proposed approach under Marr’s three-stage formu-
lation). I hypothesize that this approach provides the
algorithm with richer shape representation and enables
more accurate part segmentation. The proposed approach



(visualized in Figure 2) divides the problem into two
stages: (1) estimating local surface normal information
from a 2-D image, then (2) performing part segmentation
on the local surface normal information.
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Fig. 2. The proposed approach to part segmentation, consisting of
a surface normal estimation stage (with two considered methods),
followed by a part segmentation stage (also with two considered
methods)

B. Stage 1: Surface Normal Estimation

Overview
In computational vision, the problem of 3-D shape
recovery from one or more 2-D images of it is inherently
ambiguous and technically ill-posed. Hence, it is usually
approached by modelling some aspect of the relationship
between physical surfaces and images of them. This
paper will focus on techniques that use only single 2-
D images (such as texture and shading), as opposed to
techniques that use multiple images (such as stereo and
motion).

The Shape from Texture (SFT) approach is motivated
by Gibson’s observation [9] that a gradual local variation
in the density of a uniform pattern of repeated texture
elements (known as “texture gradient”) in an observed
brightness image indicates the direction and degree of
projection foreshortening. By assuming either texture
homogeneity or isotropy, the SFT approach models a
frontal texture and aims to recover the surface normal
at each pixel in the image. The Shape from Shading
(SFS) approach, on the other hand, models the observed
brightness image as a function of the surface normal and
the light source direction [12], and attempts to recover
the surface normal by recovering the light source and
modelling the likely shape responsible for the observed
image [34]. Another technique, used more widely in re-
cent years, is to take a data-driven approach to estimating
surface normals, such as those proposed by [8], [5], [33],
[35], and [1].

In this section, I will detail two proposed methods
for surface normal estimation. The first is a hand-
crafted homogeneous-assumption Shape from Texture
technique modelled after the Super and Bovik’s local
spectral moment algorithm [28], and the second is the

data-driven PoseNet convolutional neural network by
Bansal et al. [1]

Method 1: Using Local Spatial Moments
Super and Bovik [28] describe a non-feature-based
method for estimating the surface normal at each im-
age pixel using the moments of local spatial-frequency
spectra. The authors base their technique on the ob-
servation that the projection of local spectra and spec-
tral moments of any surface reflectance patterns (“sur-
face markings”) oriented in 3-D space correspond-
ingly transforms those surface patterns’ local spatial-
frequency spectra as well. They propose using Gabor
filters to sample the local spatial-frequency spectra in
a computationally-efficient manner, and then compute
the contrast-normalized canonical moments (structure
tensors) of the sampled spatial-frequency spectra. They
define the effect of orthographic projection on the local
spatial frequency (and hence, their canonical moments),
and then prove that computing the canonical moments
of two image pixels is sufficient to calculate the relative
slant between their local surfaces, and that two solutions
for the tilt angle can be calculated from each slant angle
estimate up to a 180-degree ambiguity. Since the slant
estimation is relative, a frontal slant must be known (or
computed) beforehand, and the surface normals of all
other points in the image can be estimated from it.

In this paper, I replicate Super and Bovik’s method,
but replace the Gabor filters with MaxPol filters
introduced in [13] [14], which fulfill the maximal-
flatness criterion and provide better sampling of the
local spatial-frequency spectrum. Initial tests indicate
that fewer MaxPol filters are consequently able to
perform better local spatial-frequency sampling than
Gabor filters.

Method 2: Using A Convolutional Neural Network
Bansal et al. [1] describe a skip-network fully-
convolutional neural network for pose and style pre-
diction, consisting of six convolutional layers initialized
with the pre-trained VGG-16 network weights [27] from
the 5-layer (of 13) subset {11, 22, 33, 43, 53, 7}, followed
by two fully-connected layers (out of 3) from VGG-16
(fc-6 and fc-7), converted into convolutional layers in the
manner of [20]. The surface normal estimation network,
named “PoseNet”, is then trained on the surface normals
computed from the Kinect depth channel of the raw
video frames of the NYU Depth v2 dataset [26]. This
information is computed by Ladicky et al. [33] for the
validation and test sets, and using the approach of Wang



et al. [30] for the training set. The authors perform an
ablative analysis on the performance of different network
architectures and show that the proposed 5-layer design
performs best in all six surface normal estimation criteria
introduced by Fouhey et al. [8].

C. Stage 2: Part Segmentation

Overview
Given the surface normal information estimated by the
first stage, the second stage of the proposed method is to
partition the image of a single object into its meaningful
parts. In this paper, I take a graph-theoretic formulation
of the part segmentation problem proposed by Shi and
Malik [24]. Known as the Normalized Graph Cut, this
method formulates the image segmentation problem as
the generalized eigenvalue problem of partitioning a
graph of pixels in the 2-D image and minimizes the
normalized cut criterion in order to maximize the image
partition’s goodness of fit. As proposed by Shi and
Malik, the grouping algorithm proceeds for a 2-D image
I as follows:

1) Set up a weighted graph G = (V,E) consisting
of a single node per pixel and an edge connecting
each pair of neighbouring pixels with an associated
weight computed by the affinity measure (which
reflects the likelihood that the two pixels belong
to the same grouping)

2) Solve (D −W)x = λDx for eigenvectors with
the smallest eigenvalues

3) Use the eigenvector with the second smallest
eigenvalue to bipartition the graph

4) Recursively repartition the segmented parts if nec-
essary

Thus, to take the bipartite case as an example, a
graph G = (V,E) is partitioned into two disjoint sets
A,B,A ∪ B = V,A ∩ B = ∅ such that the normalized
cut (“Ncut”) of the graph is minimized:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
,

cut(A,B) =
∑

w∈A,v∈B
w(u, v),

assoc(A, V ) =
∑

u∈A,t∈V
w(u, t),

assoc(B, V ) =
∑

v∈B,t∈V
w(v, t).

For both of the considered part segmentation methods,
the Normalized Graph Cuts MATLAB code provided by

Shi 1 was implemented with the following two custom
affinity measures.
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Fig. 3. Visualization of the two considered affinity measures on
the horse001 image from the Weizmann Horses dataset, using
MATLAB’s jet colour mapping, adjusted to enhance details. The
surface normal image is coloured with positive x-direction (left)
in red, positive y-direction (up) in green, and positive z-direction
(toward viewer) in blue. This colour coding for surface normals is
used throughout the rest of this paper.

Method 1: Using Planar-Affinity Normalized Cuts
In the first part segmentation method, I define the nor-
malized cut affinity measure w(u,v) between two 8-
neighbouring surface unit normals u = (ux, uy, uz),v =
(vx, vy, vz) to be the negative of the exterior dihedral
angle between them:

w(u,v) = − cos−1(|u · v|).

This affinity measure, once scaled to the range [0, 1],
measures the similarity of surface orientation between
u and v, which will produce graph-cut parts which
are maximally planar within themselves and maximally
non-planar at their boundaries. This can be considered
the 2.5-D analogue of part segmentation by 2-D feature
collinearity or co-curvilinearity used by other methods.
See Figure 3, top-right, for a visualization of the
local affinity measure (i.e. the sum of each pixel’s
8-neighbouring affinities) using the first method.

Method 2: Using Convex-Affinity Normalized Cuts
In the second part segmentation method, I define the
normalized cut affinity measure w(u,v) between two 8-
neighbouring surface unit normals u = (ux, uy, uz),v =
(vx, vy, vz) to be the sum of the opposite direction
projections of u and v onto the image plane:

1http://www.cis.upenn.edu/∼jshi/software/

http://www.cis.upenn.edu/~jshi/software/


w(u,v) =


uy − vy, if u above v

−ux + vx, if u left of v
−ux+vx+uy−vy√

2
, if u top-left of v

−ux+vx−uy+vy√
2

, if u top-right of v

This affinity measure, once scaled to the range [0, 1],
measures the degree of convexity between u and v,
which will produce graph-cut parts that are maximally
convex within themselves and maximally concave at
their boundaries. This can be considered the 2.5-D ana-
logue of part segmentation by 2-D contour or 3-D mesh
convexity used by other methods. See Figure 3, bottom-
right, for a visualization of the local affinity measure (i.e.
the sum of each pixel’s 8-neighbouring affinities) using
the second method.

IV. EXPERIMENTS

A. Stage 1: Local Surface Orientation Estimation

Experiment 1: Synthetic Textured Spheres
First, the two considered methods of local surface orien-
tation estimation were tested on five simple synthetically-
generated images of a texture patch projected onto a
spherical mesh with perspective projection and Lam-
bertian reflectance. Two are synthetically generated
isotropic textures (checker and dot), while three are
natural textures from the Brodatz texture set [31] (“D9”
for grass, “D16” for weave, and “D68” for wood).

Figure 4 displays the results; the first method (using
local spectral moments) gives a reasonable estimate for
the synthetically-generated isotropic textures, but fails
to give any reasonable estimate for the natural textures
(which may be anisotropic), whereas the second method
(using PoseNet) performs much more reasonably. From
now on, only the second method (using PoseNet) of
local surface orientation estimation will be used for part
segmentation.

B. Stage 2: Part Segmentation

Experiment 2a: Weizmann Horses (with Back-
ground Masking)
To evaluate part segmentation performance, I first apply
both considered methods (with a pre-set graph cut cluster
count of 5) on the Weizmann Horses dataset [3], which
consists of 328 grayscale images of horses collected
from the Internet in different poses and activities, but
generally viewed in profile facing left and with minimal
or no occlusion. Also, the dataset provides a ground-
truth figure-ground segmentation, so I mask out the
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Fig. 4. The estimated local surface normals on the synthetic textured
sphere images checker, dot, grass, weave, and wood

background from the estimated surface normals before
performing the part segmentation. Solving part segmen-
tation on the Weizmann Horses dataset is relatively
simple, since surface details are clearly visible and
occlusion is minimal, so I use it to confirm reasonable
part segmentation performance.

Figure 5 shows the successful part segmentation cases
on a subset of the Weizmann Horses dataset. Two
observations may be made from this:

1) The second method (using surface convexity) con-
sistently segments the horse into its head, chest and
fore-legs, abdomen, and rear-end and hind-legs,
whereas the first method (using surface planarity)
has a less consistent segmentation; and

2) The second method tends to correspond better to
the horse’s anatomy (e.g. it segments the highly-
convex shoulder region separately from the ab-
domen, but the first method separates the shoulder
into three parts).
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Fig. 5. The successful part segmentation results on horses 5, 30,
105, 102, and 169 of the Weizmann Horses dataset with background
masking
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Fig. 6. The failed part segmentation results on horses 125, 215, and
265 of the Weizmann Horses dataset with background masking

Figure 6, meanwhile, shows the failure modes of
part segmentation, and both considered methods can
be seen to mis-segment certain parts of the horse
with the background in cases where the surface normal
estimation is too noisy (e.g. at the back of horse 215). In
general, the second method of surface normal estimation
is accurate enough for reasonable part segmentation, but
in cases where the estimation is poor, part segmentation
accuracy deteriorates accordingly.

Experiment 2b: PASCAL VOC 2010 Part Database
(with Background Masking)
To evaluate part segmentation on a more challenging set
of natural images, I apply the two considered methods
on the training/validation set of the PASCAL VOC 2010
Part Database [4], which consists of 10,103 images of
objects in cluttered scenes segmented into their con-
stituent semantic parts (e.g. the tail of a cat, or the engine
of an aeroplane). Since a ground-truth part segmentation
is provided with the dataset (along with a ground-truth
figure-ground segmentation), I pre-set the graph cut
cluster count to equal the number of ground-truth parts
provided and again mask out the background from the
estimated surface normals.

Figure 7 shows the successful part segmentations on
a subset of the VOC dataset: both methods perform
surprisingly well for certain images (e.g. the aeroplane
in 2008_000033, the cat in 2008_000960, the horse

in 2008_000602, the motorbike in 2008_001525,
and the person in 2008_000144), although they tend
to over-segment when the ground-truth segmentation
contains numerous parts. It can also be remarked that
the second method tends to out-perform the first method,
since surface convexity seems to correspond better to
semantic part boundaries than surface planarity (e.g. for
the motorbike in 2008_001525).
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Fig. 7. The successful part segmentation results on
images 2008_000033, 2008_000960, 2008_002045,
2008_000973, 2008_000602, 2008_001525, and
2008_000144 of the PASCAL VOC 2010 Part dataset with
background masking

Figure 8, on the other hand, shows the failure modes
of part segmentation. Two observations may be made
from these:

1) In these images, the ground-truth consists of nu-
merous semantic parts of varying relative sizes.
Since normalized graph cuts normalizes is normal-
ized to the number of inter-cut connections, both
methods 1 and 2 tend to produce similarly-sized
parts.

2) It can be seen from the surface normal estimates
that the smaller semantic parts (such as the eyes
in 2008_000096 and 2008_000215) are not
clearly defined in the surface normal estimation,
and this limited estimation resolution is inevitably
another cause of the failure in part segmentation.

Experiment 2c: PASCAL VOC 2010 Part Database
(without Background Masking)
The proposed two-stage part segmentation algorithm
uses shape as a cue for part segmentation after the
underlying surface normal has been estimated from the
image appearance. As such, it will be susceptible to
mis-segmentation when the background is not properly
masked, or when other cues are more important for
part segmentation than surface shape. Hence, to test the
effect of background masking on the part segmentation,
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Fig. 8. The failed part segmentation results on images
2008_000064, 2008_000096, and 2008_000215 of the PAS-
CAL VOC 2010 Part dataset with background masking

I conducted a final test on the PASCAL VOC 2010 Part
Database, but without first masking out the background.

Figure 9 shows that the part segmentation is wildly
off the mark when the background is not masked out.
There are likely several reasons for this:

1) The surface normal estimation already has
spurious artifacts in the background (e.g.
2008_000033 in the middle), and

2) There is often no clear separation between the
object and the background in the estimated surface
normals, which leads foreground regions being
grouped with background regions.

These results strongly suggest that good relevant ob-
ject segmentation (and by extension, good foreground-
background segmentation) is a strict pre-requisite for the
proposed part segmentation algorithm to work properly.

V. DISCUSSION / FUTURE DIRECTIONS

To conclude, experimental results support the hypothe-
sis that a two-stage part segmentation pipeline consisting
of a surface normal estimation stage followed by a graph-
theoretic part segmentation stage is a feasible approach
to part segmentation. By incorporating surface normal
estimates as intermediate shape cues from the image
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Fig. 9. The part segmentation results on images 2008_000064,
2008_000033, and 2008_001525 of the PASCAL VOC 2010
Part dataset without background masking

(corresponding to the 2.5-D sketch formulated by Marr),
the proposed approach is able to provide reasonable
part segmentations. Preliminary tests suggest that the
best-performing configuration consists of PoseNet sur-
face normal estimation followed by surface-convexity
normalized graph cut segmentation.

Whereas the first proposed method for surface normal
estimation proved to be insufficiently robust across dif-
ferent images, the PoseNet convolutional neural network
approach was demonstrably accurate enough for part
segmentation by normalized graph cuts. Of the two
graph-cut affinity measures considered, the second (using
surface convexity) was superior to the first (using surface
planarity). This can be considered the 2.5-D equivalent
of using 2-D contour convexity as a segmentation cue,
which is used by other methods. My tests also show that
the considered configurations only perform reasonably
well when the foreground (or the object of interest)
is adequately segmented from the background (or any
distractor object).

The proposed method has been shown to work well
in certain cases, but its weaknesses suggest some fu-



ture directions for improvement: (1) improve part seg-
mentation by incorporating more bottom-up information
(e.g. appearance cues) or more top-down information
(e.g. semantic information), (2) implement automatic
object of interest segmentation in case such segmenta-
tion is not known a priori, and (3) address the chal-
lenge of segmenting different-sized semantic parts by
using a non-graph-theoretic segmentation method or a
graph-theoretic segmentation method which accounts for
differently-sized clusters.

REFERENCES

[1] A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-3d
alignment via surface normal prediction. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 5965–5974, 2016. 3

[2] H. Blum. A Transformation for Extracting New Descriptors
of Shape. In W. Wathen-Dunn, editor, Models for the Percep-
tion of Speech and Visual Form, pages 362–380. MIT Press,
Cambridge, 1967. 2

[3] E. Borenstein and S. Ullman. Class-specific, top-down seg-
mentation. In European conference on computer vision, pages
109–122. Springer, 2002. 5

[4] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and
A. Yuille. Detect what you can: Detecting and representing
objects using holistic models and body parts. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1971–1978, 2014. 6

[5] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In Ad-
vances in neural information processing systems, pages 2366–
2374, 2014. 3

[6] J. Elder and S. Zucker. The effect of contour closure on
the rapid discrimination of two-dimensional shapes. Vision
Research, 33(7):981–991, 1993. 1

[7] J. Feldman and M. Singh. Bayesian estimation of the shape
skeleton. Proceedings of the National Academy of Sciences,
103(47):18014–18019, 2006. 2

[8] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3d
primitives for single image understanding. In Computer Vision
(ICCV), 2013 IEEE International Conference on, pages 3392–
3399. IEEE, 2013. 3, 4

[9] J. J. Gibson. The perception of the visual world. 1950. 3
[10] A. Golovinskiy and T. Funkhouser. Randomized cuts for

3d mesh analysis. In ACM transactions on graphics (TOG),
volume 27, page 145. ACM, 2008. 2

[11] D. D. Hoffman and W. A. Richards. Parts of recognition.
Cognition, 18(1-3):65–96, 1984. 1

[12] B. K. Horn. Shape from shading: A method for obtaining the
shape of a smooth opaque object from one view. 1970. 3

[13] M. S. Hosseini and K. N. Plataniotis. Derivative kernels:
Numerics and applications. IEEE Transactions on Image
Processing, 26(10):4596–4611, 2017. 3

[14] M. S. Hosseini and K. N. Plataniotis. Finite differences in
forward and inverse imaging problems: Maxpol design. SIAM
Journal on Imaging Sciences, 10(4):1963–1996, 2017. 3

[15] B. Julesz. Textons, the elements of texture perception, and their
interactions. Nature, 290(5802):91, 1981. 1

[16] S. Katz and A. Tal. Hierarchical mesh decomposition using
fuzzy clustering and cuts, volume 22. ACM, 2003. 2

[17] I. Kovacs and B. Julesz. Perceptual sensitivity maps within
globally defined visual shapes. Nature, 370(6491):644, 1994. 1

[18] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Optimal
image and video closure by superpixel grouping. International
journal of computer vision, 100(1):99–119, 2012. 2

[19] R. Liu and H. Zhang. Segmentation of 3d meshes through
spectral clustering. In Computer Graphics and Applications,
2004. PG 2004. Proceedings. 12th Pacific Conference on, pages
298–305. IEEE, 2004. 2

[20] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
models for semantic segmentation. In CVPR, volume 3, page 4,
2015. 3

[21] D. Marr. Early processing of visual information. Phil. Trans.
R. Soc. Lond. B, 275(942):483–519, 1976. 2

[22] D. Marr. Vision: a computational investigation into the human
representation and processing of visual information. w. h. WH
San Francisco: Freeman and Company, 1982. 2

[23] Y. Qi, Y.-Z. Song, T. Xiang, H. Zhang, T. Hospedales, Y. Li, and
J. Guo. Making better use of edges via perceptual grouping. In
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE
Conference on, pages 1856–1865. IEEE, 2015. 2

[24] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelli-
gence, 22(8):888–905, 2000. 2, 4

[25] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker.
Shock graphs and shape matching. International Journal of
Computer Vision, 35(1):13–32, 1999. 2

[26] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
European Conference on Computer Vision, pages 746–760.
Springer, 2012. 3

[27] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 3

[28] B. J. Super and A. C. Bovik. Shape from texture using local
spectral moments. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(4):333–343, 1995. 3

[29] J. M. Tenenbaum and A. Witkin. On the role of structure in
vision. Human and machine vision, pages 481–543, 1983. 1

[30] X. Wang, D. Fouhey, and A. Gupta. Designing deep networks
for surface normal estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
539–547, 2015. 4

[31] A. G. Weber. The usc-sipi image database version 5. USC-SIPI
Report, 315:1–24, 1997. 5

[32] M. Wertheimer. Laws of organization in perceptual forms. 1938.
1

[33] B. Zeisl, M. Pollefeys, et al. Discriminatively trained dense
surface normal estimation. In European conference on computer
vision, pages 468–484. Springer, 2014. 3

[34] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape-from-
shading: a survey. IEEE transactions on pattern analysis and
machine intelligence, 21(8):690–706, 1999. 3

[35] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin,
and T. Funkhouser. Physically-based rendering for indoor
scene understanding using convolutional neural networks. The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 3


